Discussion:
[PATCH v2 1/2] crypto: arm/ghash - add NEON accelerated fallback for vmull.p64
Ard Biesheuvel
2017-07-04 23:43:18 UTC
Permalink
Implement a NEON fallback for systems that do support NEON but have
no support for the optional 64x64->128 polynomial multiplication
instruction that is part of the ARMv8 Crypto Extensions. It is based
on the paper "Fast Software Polynomial Multiplication on ARM Processors
Using the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
Ricardo Dahab (https://hal.inria.fr/hal-01506572)

On a 32-bit guest executing under KVM on a Cortex-A57, the new code is
not only 4x faster than the generic table based GHASH driver, it is also
time invariant. (Note that the existing vmull.p64 code is 16x faster on
this core).

Signed-off-by: Ard Biesheuvel <***@linaro.org>
---
v2:
- use alternative reduction

arch/arm/crypto/Kconfig | 5 +-
arch/arm/crypto/ghash-ce-core.S | 132 ++++++++++++++++++--
arch/arm/crypto/ghash-ce-glue.c | 24 +++-
3 files changed, 145 insertions(+), 16 deletions(-)

diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
index d8f3336bfc88..0b960ed124ae 100644
--- a/arch/arm/crypto/Kconfig
+++ b/arch/arm/crypto/Kconfig
@@ -106,14 +106,15 @@ config CRYPTO_AES_ARM_CE
ARMv8 Crypto Extensions

config CRYPTO_GHASH_ARM_CE
- tristate "PMULL-accelerated GHASH using ARMv8 Crypto Extensions"
+ tristate "PMULL-accelerated GHASH using NEON/ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_CRYPTD
help
Use an implementation of GHASH (used by the GCM AEAD chaining mode)
that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
- that is part of the ARMv8 Crypto Extensions
+ that is part of the ARMv8 Crypto Extensions, or a slower variant that
+ uses the vmull.p8 instruction that is part of the basic NEON ISA.

config CRYPTO_CRCT10DIF_ARM_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
diff --git a/arch/arm/crypto/ghash-ce-core.S b/arch/arm/crypto/ghash-ce-core.S
index f6ab8bcc9efe..7c7ee9be14ff 100644
--- a/arch/arm/crypto/ghash-ce-core.S
+++ b/arch/arm/crypto/ghash-ce-core.S
@@ -1,7 +1,7 @@
/*
- * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
+ * Accelerated GHASH implementation with NEON/ARMv8 vmull.p8/64 instructions.
*
- * Copyright (C) 2015 Linaro Ltd. <***@linaro.org>
+ * Copyright (C) 2015 - 2017 Linaro Ltd. <***@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
@@ -25,6 +25,8 @@
SHASH_H .req d1
SHASH2_L .req d2
T1_L .req d4
+ T2_L .req d6
+ T2_H .req d7
MASK_L .req d8
XL_L .req d10
XL_H .req d11
@@ -32,14 +34,85 @@
XM_H .req d13
XH_L .req d14

+ k16 .req d19
+ k32 .req d20
+ k48 .req d21
+
+ t0l .req d22
+ t0h .req d23
+ t1l .req d24
+ t1h .req d25
+ t2l .req d26
+ t2h .req d27
+ t3l .req d28
+ t3h .req d29
+ t4l .req d30
+ t4h .req d31
+
+ t0q .req q11
+ t1q .req q12
+ t2q .req q13
+ t3q .req q14
+ t4q .req q15
+
.text
.fpu crypto-neon-fp-armv8

/*
- * void pmull_ghash_update(int blocks, u64 dg[], const char *src,
- * struct ghash_key const *k, const char *head)
+ * This implementation of 64x64 -> 128 bit polynomial multiplication
+ * using vmull.p8 instructions (8x8 -> 16) is taken from the paper
+ * "Fast Software Polynomial Multiplication on ARM Processors Using
+ * the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
+ * Ricardo Dahab (https://hal.inria.fr/hal-01506572)
+ *
+ * It has been slightly tweaked for in-order performance, and to allow
+ * 'rq' to overlap with 'ad' or 'bd'.
*/
-ENTRY(pmull_ghash_update)
+ .macro __pmull_p8, rq, ad, bd
+ vext.8 t0l, \ad, \ad, #1 @ A1
+ vext.8 t4l, \bd, \bd, #1 @ B1
+ vmull.p8 t0q, t0l, \bd @ F = A1*B
+ vext.8 t1l, \ad, \ad, #2 @ A2
+ vmull.p8 t4q, \ad, t4l @ E = A*B1
+ vext.8 t3l, \bd, \bd, #2 @ B2
+ vmull.p8 t1q, t1l, \bd @ H = A2*B
+ vext.8 t2l, \ad, \ad, #3 @ A3
+ vmull.p8 t3q, \ad, t3l @ G = A*B2
+ veor t0q, t0q, t4q @ L = E + F
+ vext.8 t4l, \bd, \bd, #3 @ B3
+ vmull.p8 t2q, t2l, \bd @ J = A3*B
+ veor t0l, t0l, t0h @ t0 = (L) (P0 + P1) << 8
+ veor t1q, t1q, t3q @ M = G + H
+ vext.8 t3l, \bd, \bd, #4 @ B4
+ vmull.p8 t4q, \ad, t4l @ I = A*B3
+ veor t1l, t1l, t1h @ t1 = (M) (P2 + P3) << 16
+ vmull.p8 t3q, \ad, t3l @ K = A*B4
+ vand t0h, t0h, k48
+ vand t1h, t1h, k32
+ veor t2q, t2q, t4q @ N = I + J
+ veor t0l, t0l, t0h
+ veor t1l, t1l, t1h
+ veor t2l, t2l, t2h @ t2 = (N) (P4 + P5) << 24
+ vand t2h, t2h, k16
+ veor t3l, t3l, t3h @ t3 = (K) (P6 + P7) << 32
+ vmov.i64 t3h, #0
+ vext.8 t0q, t0q, t0q, #15
+ veor t2l, t2l, t2h
+ vext.8 t1q, t1q, t1q, #14
+ vmull.p8 \rq, \ad, \bd @ D = A*B
+ vext.8 t2q, t2q, t2q, #13
+ vext.8 t3q, t3q, t3q, #12
+ veor t0q, t0q, t1q
+ veor t2q, t2q, t3q
+ veor \rq, \rq, t0q
+ veor \rq, \rq, t2q
+ .endm
+
+ .macro __pmull_p64, rd, rn, rm
+ vmull.p64 \rd, \rn, \rm
+ .endm
+
+ .macro ghash_update, pn
vld1.64 {SHASH}, [r3]
vld1.64 {XL}, [r1]
vmov.i8 MASK, #0xe1
@@ -67,15 +140,17 @@ ENTRY(pmull_ghash_update)
veor T1, T1, T2
veor XL, XL, IN1

- vmull.p64 XH, SHASH_H, XL_H @ a1 * b1
+ __pmull_\pn XH, SHASH_H, XL_H @ a1 * b1
veor T1, T1, XL
- vmull.p64 XL, SHASH_L, XL_L @ a0 * b0
- vmull.p64 XM, SHASH2_L, T1_L @ (a1 + a0)(b1 + b0)
+ __pmull_\pn XL, SHASH_L, XL_L @ a0 * b0
+ __pmull_\pn XM, SHASH2_L, T1_L @ (a1 + a0)(b1 + b0)

- vext.8 T1, XL, XH, #8
veor T2, XL, XH
- veor XM, XM, T1
veor XM, XM, T2
+
+ .ifc \pn, p64
+ vext.8 T1, XL, XH, #8
+ veor XM, XM, T1
vmull.p64 T2, XL_L, MASK_L

vmov XH_L, XM_H
@@ -84,6 +159,25 @@ ENTRY(pmull_ghash_update)
veor XL, XM, T2
vext.8 T2, XL, XL, #8
vmull.p64 XL, XL_L, MASK_L
+ .else
+ veor XL_H, XL_H, XM_L
+ veor XH_L, XH_L, XM_H
+
+ vshl.i64 T2, XL, #1
+ veor T2, T2, XL
+ vshl.i64 T2, T2, #5
+ veor T2, T2, XL
+ vshl.i64 T2, T2, #57
+ veor XL_H, XL_H, T2_L
+ veor XH_L, XH_L, T2_H
+
+ vshr.u64 T2, XL, #5
+ veor T2, T2, XL
+ vshr.u64 T2, T2, #1
+ veor T2, T2, XL
+ vshr.u64 T2, T2, #1
+ .endif
+
veor T2, T2, XH
veor XL, XL, T2

@@ -91,4 +185,20 @@ ENTRY(pmull_ghash_update)

vst1.64 {XL}, [r1]
bx lr
-ENDPROC(pmull_ghash_update)
+ .endm
+
+ /*
+ * void pmull_ghash_update(int blocks, u64 dg[], const char *src,
+ * struct ghash_key const *k, const char *head)
+ */
+ENTRY(pmull_ghash_update_p64)
+ ghash_update p64
+ENDPROC(pmull_ghash_update_p64)
+
+ENTRY(pmull_ghash_update_p8)
+ vmov.i64 k16, #0xffff
+ vmov.i64 k32, #0xffffffff
+ vmov.i64 k48, #0xffffffffffff
+
+ ghash_update p8
+ENDPROC(pmull_ghash_update_p8)
diff --git a/arch/arm/crypto/ghash-ce-glue.c b/arch/arm/crypto/ghash-ce-glue.c
index 6bac8bea9f1e..d9bb52cae2ac 100644
--- a/arch/arm/crypto/ghash-ce-glue.c
+++ b/arch/arm/crypto/ghash-ce-glue.c
@@ -22,6 +22,7 @@
MODULE_DESCRIPTION("GHASH secure hash using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <***@linaro.org>");
MODULE_LICENSE("GPL v2");
+MODULE_ALIAS_CRYPTO("ghash");

#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
@@ -41,8 +42,17 @@ struct ghash_async_ctx {
struct cryptd_ahash *cryptd_tfm;
};

-asmlinkage void pmull_ghash_update(int blocks, u64 dg[], const char *src,
- struct ghash_key const *k, const char *head);
+asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);
+
+asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);
+
+static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);

static int ghash_init(struct shash_desc *desc)
{
@@ -312,6 +322,14 @@ static int __init ghash_ce_mod_init(void)
{
int err;

+ if (!(elf_hwcap & HWCAP_NEON))
+ return -ENODEV;
+
+ if (elf_hwcap2 & HWCAP2_PMULL)
+ pmull_ghash_update = pmull_ghash_update_p64;
+ else
+ pmull_ghash_update = pmull_ghash_update_p8;
+
err = crypto_register_shash(&ghash_alg);
if (err)
return err;
@@ -332,5 +350,5 @@ static void __exit ghash_ce_mod_exit(void)
crypto_unregister_shash(&ghash_alg);
}

-module_cpu_feature_match(PMULL, ghash_ce_mod_init);
+module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);
--
2.9.3
Ard Biesheuvel
2017-07-04 23:43:19 UTC
Permalink
Implement a NEON fallback for systems that do support NEON but have
no support for the optional 64x64->128 polynomial multiplication
instruction that is part of the ARMv8 Crypto Extensions. It is based
on the paper "Fast Software Polynomial Multiplication on ARM Processors
Using the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
Ricardo Dahab (https://hal.inria.fr/hal-01506572), but has been reworked
extensively for the AArch64 ISA.

On a low-end core such as the Cortex-A53 found in the Raspberry Pi3, the
NEON based implementation is 4x faster than the table based one, and
is time invariant as well, making it less vulnerable to timing attacks.
When combined with the bit-sliced NEON implementation of AES-CTR, the
AES-GCM performance increases by ~2x (from 58 to 30 cycles per byte).

Signed-off-by: Ard Biesheuvel <***@linaro.org>
---
v2:
- use alternative reduction and precomputed coefficients for loop invariants
- refactor asm macros for better legibility

arch/arm64/crypto/ghash-ce-core.S | 251 +++++++++++++++++---
arch/arm64/crypto/ghash-ce-glue.c | 40 +++-
2 files changed, 255 insertions(+), 36 deletions(-)

diff --git a/arch/arm64/crypto/ghash-ce-core.S b/arch/arm64/crypto/ghash-ce-core.S
index cb22459eba85..5d40b99ca3ac 100644
--- a/arch/arm64/crypto/ghash-ce-core.S
+++ b/arch/arm64/crypto/ghash-ce-core.S
@@ -1,7 +1,7 @@
/*
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
*
- * Copyright (C) 2014 Linaro Ltd. <***@linaro.org>
+ * Copyright (C) 2014 - 2017 Linaro Ltd. <***@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
@@ -11,31 +11,219 @@
#include <linux/linkage.h>
#include <asm/assembler.h>

- SHASH .req v0
- SHASH2 .req v1
- T1 .req v2
- T2 .req v3
- MASK .req v4
- XL .req v5
- XM .req v6
- XH .req v7
- IN1 .req v7
+ SHASH .req v0
+ SHASH2 .req v1
+ T1 .req v2
+ T2 .req v3
+ MASK .req v4
+ XL .req v5
+ XM .req v6
+ XH .req v7
+ IN1 .req v7
+
+ k00_16 .req v8
+ k32_48 .req v9
+
+ t3 .req v10
+ t4 .req v11
+ t5 .req v12
+ t6 .req v13
+ t7 .req v14
+ t8 .req v15
+ t9 .req v16
+
+ perm1 .req v17
+ perm2 .req v18
+ perm3 .req v19
+
+ sh1 .req v20
+ sh2 .req v21
+ sh3 .req v22
+ sh4 .req v23
+
+ ss1 .req v24
+ ss2 .req v25
+ ss3 .req v26
+ ss4 .req v27
+
+ VZR .req v28

.text
.arch armv8-a+crypto

- /*
- * void pmull_ghash_update(int blocks, u64 dg[], const char *src,
- * struct ghash_key const *k, const char *head)
- */
-ENTRY(pmull_ghash_update)
+ .macro __pmull_p64, rd, rn, rm
+ pmull \rd\().1q, \rn\().1d, \rm\().1d
+ .endm
+
+ .macro __pmull2_p64, rd, rn, rm
+ pmull2 \rd\().1q, \rn\().2d, \rm\().2d
+ .endm
+
+ .macro __pmull_p8, rq, ad, bd
+ ext t3.8b, \ad\().8b, \ad\().8b, #1 // A1
+ ext t5.8b, \ad\().8b, \ad\().8b, #2 // A2
+ ext t7.8b, \ad\().8b, \ad\().8b, #3 // A3
+
+ __pmull_p8_\bd \rq, \ad
+ .endm
+
+ .macro __pmull2_p8, rq, ad, bd
+ tbl t3.16b, {\ad\().16b}, perm1.16b // A1
+ tbl t5.16b, {\ad\().16b}, perm2.16b // A2
+ tbl t7.16b, {\ad\().16b}, perm3.16b // A3
+
+ __pmull2_p8_\bd \rq, \ad
+ .endm
+
+ .macro __pmull_p8_SHASH, rq, ad
+ __pmull_p8_tail \rq, \ad\().8b, SHASH.8b, 8b,, sh1, sh2, sh3, sh4
+ .endm
+
+ .macro __pmull_p8_SHASH2, rq, ad
+ __pmull_p8_tail \rq, \ad\().8b, SHASH2.8b, 8b,, ss1, ss2, ss3, ss4
+ .endm
+
+ .macro __pmull2_p8_SHASH, rq, ad
+ __pmull_p8_tail \rq, \ad\().16b, SHASH.16b, 16b, 2, sh1, sh2, sh3, sh4
+ .endm
+
+ .macro __pmull_p8_tail, rq, ad, bd, nb, t, b1, b2, b3, b4
+ pmull\t t3.8h, t3.\nb, \bd // F = A1*B
+ pmull\t t4.8h, \ad, \b1\().\nb // E = A*B1
+ pmull\t t5.8h, t5.\nb, \bd // H = A2*B
+ pmull\t t6.8h, \ad, \b2\().\nb // G = A*B2
+ pmull\t t7.8h, t7.\nb, \bd // J = A3*B
+ pmull\t t8.8h, \ad, \b3\().\nb // I = A*B3
+ pmull\t t9.8h, \ad, \b4\().\nb // K = A*B4
+ pmull\t \rq\().8h, \ad, \bd // D = A*B
+
+ eor t3.16b, t3.16b, t4.16b // L = E + F
+ eor t5.16b, t5.16b, t6.16b // M = G + H
+ eor t7.16b, t7.16b, t8.16b // N = I + J
+
+ uzp1 t4.2d, t3.2d, t5.2d
+ uzp2 t3.2d, t3.2d, t5.2d
+ uzp1 t6.2d, t7.2d, t9.2d
+ uzp2 t7.2d, t7.2d, t9.2d
+
+ // t3 = (L) (P0 + P1) << 8
+ // t5 = (M) (P2 + P3) << 16
+ eor t4.16b, t4.16b, t3.16b
+ and t3.16b, t3.16b, k32_48.16b
+
+ // t7 = (N) (P4 + P5) << 24
+ // t9 = (K) (P6 + P7) << 32
+ eor t6.16b, t6.16b, t7.16b
+ and t7.16b, t7.16b, k00_16.16b
+
+ eor t4.16b, t4.16b, t3.16b
+ eor t6.16b, t6.16b, t7.16b
+
+ zip2 t5.2d, t4.2d, t3.2d
+ zip1 t3.2d, t4.2d, t3.2d
+ zip2 t9.2d, t6.2d, t7.2d
+ zip1 t7.2d, t6.2d, t7.2d
+
+ ext t3.16b, t3.16b, t3.16b, #15
+ ext t5.16b, t5.16b, t5.16b, #14
+ ext t7.16b, t7.16b, t7.16b, #13
+ ext t9.16b, t9.16b, t9.16b, #12
+
+ eor t3.16b, t3.16b, t5.16b
+ eor t7.16b, t7.16b, t9.16b
+ eor \rq\().16b, \rq\().16b, t3.16b
+ eor \rq\().16b, \rq\().16b, t7.16b
+ .endm
+
+ .macro __pmull_pre_p64
+ movi MASK.16b, #0xe1
+ shl MASK.2d, MASK.2d, #57
+ .endm
+
+ .macro __pmull_pre_p8
+ // k00_16 := 0x0000000000000000_000000000000ffff
+ // k32_48 := 0x00000000ffffffff_0000ffffffffffff
+ movi k32_48.2d, #0xffffffff
+ mov k32_48.h[2], k32_48.h[0]
+ ushr k00_16.2d, k32_48.2d, #32
+
+ // prepare the permutation vectors
+ mov_q x5, 0x080f0e0d0c0b0a09
+ movi T1.8b, #8
+ dup perm1.2d, x5
+ eor perm1.16b, perm1.16b, T1.16b
+ ushr perm2.2d, perm1.2d, #8
+ ushr perm3.2d, perm1.2d, #16
+ ushr T1.2d, perm1.2d, #24
+ sli perm2.2d, perm1.2d, #56
+ sli perm3.2d, perm1.2d, #48
+ sli T1.2d, perm1.2d, #40
+
+ // precompute loop invariants
+ tbl sh1.16b, {SHASH.16b}, perm1.16b
+ tbl sh2.16b, {SHASH.16b}, perm2.16b
+ tbl sh3.16b, {SHASH.16b}, perm3.16b
+ tbl sh4.16b, {SHASH.16b}, T1.16b
+ ext ss1.8b, SHASH2.8b, SHASH2.8b, #1
+ ext ss2.8b, SHASH2.8b, SHASH2.8b, #2
+ ext ss3.8b, SHASH2.8b, SHASH2.8b, #3
+ ext ss4.8b, SHASH2.8b, SHASH2.8b, #4
+
+ movi VZR.16b, #0
+ .endm
+
+ //
+ // PMULL (64x64->128) based reduction for CPUs that can do
+ // it in a single instruction.
+ //
+ .macro __pmull_reduce_p64
+ ext T1.16b, XL.16b, XH.16b, #8
+ pmull T2.1q, XL.1d, MASK.1d
+ eor XM.16b, XM.16b, T1.16b
+
+ mov XH.d[0], XM.d[1]
+ mov XM.d[1], XL.d[0]
+
+ eor XL.16b, XM.16b, T2.16b
+ ext T2.16b, XL.16b, XL.16b, #8
+ pmull XL.1q, XL.1d, MASK.1d
+ .endm
+
+ //
+ // Alternative reduction for CPUs that lack support for the
+ // 64x64->128 PMULL instruction
+ //
+ .macro __pmull_reduce_p8
+ ext T2.16b, VZR.16b, XM.16b, #8
+ ext XM.16b, XM.16b, VZR.16b, #8
+ eor XL.16b, XL.16b, T2.16b
+ eor XH.16b, XH.16b, XM.16b
+
+ shl T2.2d, XL.2d, #1
+ eor T2.16b, T2.16b, XL.16b
+ shl T2.2d, T2.2d, #5
+ eor T2.16b, T2.16b, XL.16b
+ shl T2.2d, T2.2d, #57
+ ext XM.16b, VZR.16b, T2.16b, #8
+ ext T2.16b, T2.16b, VZR.16b, #8
+ eor XL.16b, XL.16b, XM.16b
+ eor XH.16b, XH.16b, T2.16b
+
+ ushr T2.2d, XL.2d, #5
+ eor T2.16b, T2.16b, XL.16b
+ ushr T2.2d, T2.2d, #1
+ eor T2.16b, T2.16b, XL.16b
+ ushr T2.2d, T2.2d, #1
+ .endm
+
+ .macro __pmull_ghash, pn
ld1 {SHASH.2d}, [x3]
ld1 {XL.2d}, [x1]
- movi MASK.16b, #0xe1
ext SHASH2.16b, SHASH.16b, SHASH.16b, #8
- shl MASK.2d, MASK.2d, #57
eor SHASH2.16b, SHASH2.16b, SHASH.16b

+ __pmull_pre_\pn
+
/* do the head block first, if supplied */
cbz x4, 0f
ld1 {T1.2d}, [x4]
@@ -52,23 +240,16 @@ CPU_LE( rev64 T1.16b, T1.16b )
eor T1.16b, T1.16b, T2.16b
eor XL.16b, XL.16b, IN1.16b

- pmull2 XH.1q, SHASH.2d, XL.2d // a1 * b1
+ __pmull2_\pn XH, XL, SHASH // a1 * b1
eor T1.16b, T1.16b, XL.16b
- pmull XL.1q, SHASH.1d, XL.1d // a0 * b0
- pmull XM.1q, SHASH2.1d, T1.1d // (a1 + a0)(b1 + b0)
+ __pmull_\pn XL, XL, SHASH // a0 * b0
+ __pmull_\pn XM, T1, SHASH2 // (a1 + a0)(b1 + b0)

- ext T1.16b, XL.16b, XH.16b, #8
eor T2.16b, XL.16b, XH.16b
- eor XM.16b, XM.16b, T1.16b
eor XM.16b, XM.16b, T2.16b
- pmull T2.1q, XL.1d, MASK.1d

- mov XH.d[0], XM.d[1]
- mov XM.d[1], XL.d[0]
+ __pmull_reduce_\pn

- eor XL.16b, XM.16b, T2.16b
- ext T2.16b, XL.16b, XL.16b, #8
- pmull XL.1q, XL.1d, MASK.1d
eor T2.16b, T2.16b, XH.16b
eor XL.16b, XL.16b, T2.16b

@@ -76,7 +257,19 @@ CPU_LE( rev64 T1.16b, T1.16b )

st1 {XL.2d}, [x1]
ret
-ENDPROC(pmull_ghash_update)
+ .endm
+
+ /*
+ * void pmull_ghash_update(int blocks, u64 dg[], const char *src,
+ * struct ghash_key const *k, const char *head)
+ */
+ENTRY(pmull_ghash_update_p64)
+ __pmull_ghash p64
+ENDPROC(pmull_ghash_update_p64)
+
+ENTRY(pmull_ghash_update_p8)
+ __pmull_ghash p8
+ENDPROC(pmull_ghash_update_p8)

KS .req v8
CTR .req v9
diff --git a/arch/arm64/crypto/ghash-ce-glue.c b/arch/arm64/crypto/ghash-ce-glue.c
index 524dd5a5aca1..45d49d293d0d 100644
--- a/arch/arm64/crypto/ghash-ce-glue.c
+++ b/arch/arm64/crypto/ghash-ce-glue.c
@@ -26,6 +26,7 @@
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <***@linaro.org>");
MODULE_LICENSE("GPL v2");
+MODULE_ALIAS_CRYPTO("ghash");

#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
@@ -48,8 +49,17 @@ struct gcm_aes_ctx {
struct ghash_key ghash_key;
};

-asmlinkage void pmull_ghash_update(int blocks, u64 dg[], const char *src,
- struct ghash_key const *k, const char *head);
+asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);
+
+asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);
+
+static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
+ struct ghash_key const *k,
+ const char *head);

asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
const u8 src[], struct ghash_key const *k,
@@ -554,13 +564,24 @@ static int __init ghash_ce_mod_init(void)
{
int ret;

- ret = crypto_register_aead(&gcm_aes_alg);
- if (ret)
- return ret;
+ if (!(elf_hwcap & HWCAP_ASIMD))
+ return -ENODEV;
+
+ if (elf_hwcap & HWCAP_PMULL)
+ pmull_ghash_update = pmull_ghash_update_p64;
+
+ else
+ pmull_ghash_update = pmull_ghash_update_p8;

ret = crypto_register_shash(&ghash_alg);
if (ret)
- crypto_unregister_aead(&gcm_aes_alg);
+ return ret;
+
+ if (elf_hwcap & HWCAP_PMULL) {
+ ret = crypto_register_aead(&gcm_aes_alg);
+ if (ret)
+ crypto_unregister_shash(&ghash_alg);
+ }
return ret;
}

@@ -570,5 +591,10 @@ static void __exit ghash_ce_mod_exit(void)
crypto_unregister_aead(&gcm_aes_alg);
}

-module_cpu_feature_match(PMULL, ghash_ce_mod_init);
+static const struct cpu_feature ghash_cpu_feature[] = {
+ { cpu_feature(PMULL) }, { }
+};
+MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
+
+module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);
--
2.9.3
Ard Biesheuvel
2017-07-18 09:56:54 UTC
Permalink
Post by Ard Biesheuvel
Implement a NEON fallback for systems that do support NEON but have
no support for the optional 64x64->128 polynomial multiplication
instruction that is part of the ARMv8 Crypto Extensions. It is based
on the paper "Fast Software Polynomial Multiplication on ARM Processors
Using the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
Ricardo Dahab (https://hal.inria.fr/hal-01506572), but has been reworked
extensively for the AArch64 ISA.
On a low-end core such as the Cortex-A53 found in the Raspberry Pi3, the
NEON based implementation is 4x faster than the table based one, and
is time invariant as well, making it less vulnerable to timing attacks.
When combined with the bit-sliced NEON implementation of AES-CTR, the
AES-GCM performance increases by ~2x (from 58 to 30 cycles per byte).
This patch does not apply against cryptodev.
Yeah, it implements a non-SIMD fallback which depends on the AES
refactor series.
Ard Biesheuvel
2017-07-18 12:33:52 UTC
Permalink
Post by Ard Biesheuvel
Post by Ard Biesheuvel
Implement a NEON fallback for systems that do support NEON but have
no support for the optional 64x64->128 polynomial multiplication
instruction that is part of the ARMv8 Crypto Extensions. It is based
on the paper "Fast Software Polynomial Multiplication on ARM Processors
Using the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
Ricardo Dahab (https://hal.inria.fr/hal-01506572), but has been reworked
extensively for the AArch64 ISA.
On a low-end core such as the Cortex-A53 found in the Raspberry Pi3, the
NEON based implementation is 4x faster than the table based one, and
is time invariant as well, making it less vulnerable to timing attacks.
When combined with the bit-sliced NEON implementation of AES-CTR, the
AES-GCM performance increases by ~2x (from 58 to 30 cycles per byte).
This patch does not apply against cryptodev.
Yeah, it implements a non-SIMD fallback which depends on the AES
refactor series.
FYI I have pushed everything I have queued up locally here:
https://git.kernel.org/pub/scm/linux/kernel/git/ardb/linux.git/log/?h=crypto-arm-for-v4.14

Once the crypto_xor() and AES refactor stuff looks satisfactory to
you, I will repost the remaining bits, including these GCM and GHASH
changes.

Thanks,
Ard.

Loading...